The Vehicle Routing Problem with Time Windows

Dr Philip Kilby | Team Leader, Optimisation Applications and Platforms
June 2017

www.data61.csiro.au
Outline

• Problem Description
• Solving the VRP
 • Construction
 • Local Search
 • Meta-heuristics
 • Variable Neighbourhood Search
 • Including Large Neighbourhood Search
• CP101
• A CP model for the VRP
Vehicle routing problem

Given a set of customers, and a fleet of vehicles to make deliveries, find a set of routes that services all customers at minimum cost.
Travelling Salesman Problem

- Find the tour of minimum cost that visits all cities
Why study the VRP?

- It’s hard: it exhibits all the difficulties of comb. opt.
- It’s useful:
 - The logistics task is 9% of economic activity in Australia
 - Logistics accounts for 10% of the selling price of goods
Why study the VRP in Robotics?

Appears as a sub-problem

Task allocation to agents
 • Multiple agents with multiple tasks
 • Best allocation minimizes cost

Scheduling with setup costs
 • Can be modelled as a VRPTW
Vehicle Routing Problem

For each customer, we know
• Quantity required
• The cost to travel to every other customer

For the vehicle fleet, we know
• The number of vehicles
• The capacity

We must determine which customers each vehicle serves, and in what order, to minimise cost
Vehicle Routing Problem

Objective function

• In academic studies, usually a combination:
 o First, minimise number of routes
 o Then minimise total distance or total time

• In real world
 o A combination of time and distance
 o Must include vehicle- and staff-dependent costs
 o Usually vehicle numbers are fixed
 o Includes “preferences” – like pretty routes
Time window constraints

Vehicle routing with Constraints

• Time Window constraints
 – A window during which service can start
 – E.g. only accept delivery 7:30am to 11:00am

 – Additional input data required
 • Duration of each customer visit
 • Time between each pair of customers

 • (Travel time can be vehicle-dependent or time-dependent)
 – Makes the route harder to visualise
Time Window constraints
Pickup and Delivery problems

- Most routing considers delivery to/from a depot (depots)
- Pickup and Delivery problems consider FedEx style problem:
 - *pickup at location A, deliver to location B*

- Load profile:
Other variants

Profitable tour problem
• Not all visits need to be completed
• Known profit for each visit
• Choose a subset that gives maximum profit = (revenue from visits) – (routing cost)

Orienteering Problem
• Maximum revenue in limited time
VRP meets the real world

Many groups now looking at real-world constraints

Rich Vehicle Routing Problem

- Attempt to model constraints common to many real-life enterprises
 - Multiple Time windows
 - Multiple Commodities
 - Multiple Depots
 - Heterogeneous vehicles
 - Compatibility constraints
 - Goods for customer A {must | can’t} travel with goods from customer B
 - Goods for customer A {must | can’t} travel on vehicle C
VRP as an instance

VRP is a Combinatorial Optimization problem

- Others include
 - Scheduling
 - Assignment
 - Bin Packing
Solving VRPs
Solution Methods

Exact:
- Integer Programming or Mixed Integer Programming
- Constraint Programming

Heuristic:
- Construct
- Improve
 - Local Search
 - Meta-heuristics
Exact Methods

VRP:
• MIP: Can only solve problems with 100-150 customers
• CP: Similar size
ILP

minimise: \(\sum_{i,j} c_{ij} \sum_k x_{ijk} \)

subject to

\[
\sum_{i} \sum_{k} x_{ijk} = 1 \quad \forall \ j
\]

Exactly one vehicle in

\[
\sum_{i} \sum_{j} x_{ijk} = 1 \quad \forall \ i
\]

Exactly one vehicle out

\[
\sum_{j} \sum_{k} x_{ihk} - \sum_{j} \sum_{k} x_{hjk} = 0 \quad \forall \ k, h
\]

It’s the same vehicle

\[
\sum_{i} q_i \sum_{j} x_{ijk} \leq Q_k \quad \forall k
\]

Capacity constraint

\[
\sum x_{ijk} = |S| - 1 \quad S \subseteq \mathcal{P}(N), 0 \not\in S
\]

Subtour elimination

\(x_{ijk} \in \{0,1\} \)
ILP

minimise: \(\sum_{i,j}^{\text{ILP}} c_{ij} \sum_{k} x_{ijk} \)

subject to

\[\sum_{i}^{\text{ILP}} \sum_{k}^{\text{ILP}} x_{ijk} = 1 \quad \forall j \]

\[\sum_{j}^{\text{ILP}} \sum_{k}^{\text{ILP}} x_{ijk} = 1 \quad \forall i \]

\[\sum_{j}^{\text{ILP}} \sum_{k}^{\text{ILP}} x_{ihk} - \sum_{j}^{\text{ILP}} \sum_{k}^{\text{ILP}} x_{hjk} = 0 \quad \forall k, h \]

\[\sum_{i} q_{i} \sum_{j}^{\text{ILP}} x_{ijk} \leq Q_{k} \quad \forall k \]

\[\sum_{i,j}^{\text{ILP}} x_{ijk} = |S| - 1 \quad S \subseteq \mathcal{P}(N), 0 \not\in S \]

\[x_{ijk} \in \{0, 1\} \]

Advantages
- Can find optimal solution

Disadvantages
- Only works for small problems
- One extra constraint \(\rightarrow \) back to the drawing board
- \(S \) is huge
ILP – Column Generation

Columns represent routes.

Column/route cost c_k

Rows represent customers.

Array entry $a_{ik} = 1$ iff customer i is covered by route k.

<table>
<thead>
<tr>
<th></th>
<th>89</th>
<th>76</th>
<th>99</th>
<th>45</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Column Generation

- Decision var \(x_k \): Use column \(k \)?
- Column only appears if feasible ordering is possible
- Cost of best ordering is \(c_k \)
- Best order stored separately
- Master problem at right

\[
\begin{align*}
\text{min} & \quad \sum c_k x_k \\
\text{subject to} & \quad \sum_{k} a_{ik} x_k = 1 \quad \forall i \\
& \quad x_k \in \{0,1\}
\end{align*}
\]
Heuristics for the VRP
Heuristics:

Often variants of
• Construct
• Improve
Heuristics for the VRP

Construction by Insertion
• Start with an empty solution
• Repeat
 • Choose which customer to insert
 • Choose where to insert it

E.g. (Greedy)
• Choose the customer that increases the cost by the least
• Insert it in the position that increases the cost by the least
Solving the VRP the easy way

Insert methods

Order is important:
Regret
Regret
Regret
Regret
Regret
Regret

Regret = C(insert in 2nd-best route) – C(insert in best route)

= f(2, i) – f(1, i)

K-Regret = \sum_{k=1, K} (f(k, i) – f(1, i))

Insert customer with maximum regret
Insertion with Regret
Seeds

Initialise each route with one (or more) customer(s)
• Indicates the general area where a vehicle will be
• May indicate time it will be there
 • Depends on time window width

Distance-based seeding
• Find the customer (s_1) most distant from the depot
• Find the customer (s_2) most distant from s_1
• Find the customer (s_3) mist distance from s_1, s_2
• ...
• Continue until all vehicles have a seed
Implementation

• Heart of algorithm is deciding which customer to insert next, and where

• Data structure of “Insert Positions”
 o legal positions to insert a customer
 o Must calculate cost of insert
 o Must ensure feasibility of insert

• After each modification (customer insert)
 o Add new insert positions
 o Update cost of affected insert positions
 o Check legality of all insert positions
 o $O(1)$ check important for efficiency
Local Search
Improvement Methods

Local Search

• Often defined using an “operator”
Improvement Methods

Local Search

- Often defined using an “operator”
 - e.g. 1-move
Improvement Methods

Local Search
• Often defined using an “operator”
 • e.g. 1-move
Improvement Methods

Local Search

• Often defined using an “operator”
 • e.g. 1-move
Improvement Methods

Local Search
• Often defined using an “operator”
 • e.g. 1-move
Improvement Methods

Local Search
• Often defined using an “operator”
 • e.g. 1-move
Improvement Methods

Local Search
- Often defined using an “operator”
 - e.g. 1-move
- Solutions that can be reached using the operator termed the *neighbourhood*
- Local Search explores the neighbourhood of the current solution
Local Search

Other Neighbourhoods for VRP:

- Swap 1-1
Local Search

Other Neighbourhoods for VRP:

- Swap 1-1
Local Search

Other Neighbourhoods for VRP:

• Swap 2-1
Local Search

Other Neighbourhoods for VRP:
- Swap 2-1
Local Search

Other Neighbourhoods for VRP:

- Swap tails
Local Search

Other Neighbourhoods for VRP:
- Swap tails
Local Search

Other Neighbourhoods for VRP:
• Swap tails
Improvement Methods

2-opt (3-opt, 4-opt...)
- Remove 2 arcs
- Replace with 2 others
Improvement Methods

Or-opt

- Consider chains of length k
- k takes value $1 \ldots n / 2$
- Remove the chain from its current position
- Consider placing in each other possible position
 - in forward orientation
 - and reverse orientation

- Very effective
Local Search

• Local minima

Objective value

Current solution
Local Search

Escaping local minima

Meta-heuristics

• Heuristic way of combining heuristics
• Designed to escape local minima
Local Search

Escaping local minima

• Define more (larger) neighbourhoods
 – 1-move (move 1 visit to another position)
 – 1-1 swap (swap visits in 2 routes)
 – 2-2 swap (swap 2 visits between 2 routes)
 – Tail exchange (swap final portion of routes)
 – 2-opt
 – Or-opt (all sizes 2 .. n/2)
 – 3-opt
Local Search

Variable Neighbourhood Search

• Consider multiple neighbourhoods
 – 1-move (move 1 visit to another position)
 – 1-1 swap (swap visits in 2 routes)
 – 2-2 swap (swap 2 visits between 2 routes)
 – 2-opt
 – Or-opt
 – Tail exchange (swap final portion of routes)
 – 3-opt
 – Explore one neighbourhood completely
 – If no improvement found, advance to next neighbourhood
 – When an improvement is found, return to level 1
Local Search

Variable Neighbourhood Search

- For new constraints/new problems, add new neighbourhoods

- E.g. Orienteering problem
 - New neighbourhoods:
 - Unassign 1 customer (i.e. do not visit)
 - Unassign clusters of customer (e.g. sequences of customers)
 - Insert clusters of unassigned customers
Local Search

Many Meta-heuristics have been tried
• Simulated Annealing
• Tabu Search
• Genetic Algorithms
• Ants
• Bees
• Particle Swarms

• Large Neighbourhood Search
Large Neighbourhood Search

- Originally developed by Paul Shaw (1997)
- This version Ropke & Pisinger (2007)\(^1\)
- A.k.a “Record-to-record” search

- Destroy part of the solution
 - Remove visits from the solution
- Re-create solution
 - Use favourite construct method to re-insert customers
- If the solution is better, keep it
- Repeat

\(^1\): S Ropke and D Pisinger, An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows, Transportation Science 40(4), pp 455-472, 2006
Large Neighbourhood Search

Destroy part of the solution (*Select* method)

- Remove some visits
- Move them to the “unassigned” lists
Large Neighbourhood Search

Destroy part of the solution (Select method)

Examples

• Remove a sequence of visits
Large Neighbourhood Search

Destroy part of the solution (Select method)

Examples

• Choose longest (worst) arc in solution
 – Remove visits at each end
 – Remove nearby visits

• Actually, choose \(r^{\text{th}} \) worst

• \(r = n \times (\text{uniform}(0,1))^y \)

• \(y \sim 6 \)
 – \(0.5^6 = 0.016 \)
 – \(0.9^6 = 0.531 \)
Large Neighbourhood Search

Destroy part of the solution (*Select* method)

Examples

- Dump visits from k routes ($k = 1, 2, 3$)
 - Prefer routes that are close,
 - Better yet, overlapping
Large Neighbourhood Search

Destroy part of the solution (Select method)

Examples

• Choose first visit randomly
• Then, remove “related” visits
 – Based on distance, time compatibility, load

\[
R_{ij} = \phi \ C_{ij} + \chi(|a_i - a_j|) + \psi(|q_i - q_j|)
\]
Large Neighbourhood Search

Destroy part of the solution (*Select* method)
Examples
• Dump visits from the smallest route
 – Good if saving vehicles
 – Sometimes fewer vehicles = reduced travel
Large Neighbourhood Search

Destroy part of the solution (Select method)

- Parameter: Max to dump
 - As a % of n?
 - As a fixed number e.g. 100 for large problems

- Actual number is uniform rand (5, max)
Large Neighbourhood Search

Re-create solution
- Systematic search
 - Smaller problem, easier to solve
 - Can be very effective

- E.g.: CP Backtracking search
 - Constraint: objective must be less than current
 - (Implicitly) Look at all reconstructions

- Backtrack as soon as a better sol is found
- Backtrack anyway after *too many* failures
Large Neighbourhood Search

Re-create solution

• Use your favourite insert method

• Better still, use a portfolio
 – Ropke: Select amongst
 – Minimum Insert Cost
 – Regret
 – 3-regret
 – 4-regret
Large Neighbourhood Search
Large Neighbourhood Search

- If the solution is better, keep it
Large Neighbourhood Search

- If the solution is better, keep it
Large Neighbourhood Search

- If the solution is better, keep it
- Can use Hill-climbing
- Can use Simulated Annealing
- Can use Threshold Annealing
- ...
Large Neighbourhood Search

\[P(\text{accept increase } \Delta) = e^{-\Delta / T} \]
Large Neighbourhood Search
Large Neighbourhood Search
Large Neighbourhood Search

Adaptive

- Ropke adapts choice based on prior performance
 - “Good” methods are chosen more often
Large Neighbourhood Search

Adapting Select method

- ropke
- nn
- rand
- worst
Large Neighbourhood Search

Ropke & Pisinger (with additions) can solve a variety of problems

- VRP
- VRP + Time Windows
- Pickup and Delivery
- Multiple Depots
- Multiple Commodities
- Heterogeneous Fleet
- Compatibility Constraints
Solution Methods

Summary so far:

• Introduced several successive insertion construction methods
 o Various ways to choose the next visit to insert
 o Various ways to choose where to insert

• Described two successful metaheuristics
 o Variable Neighbourhood Search
 o Large Neighbourhood Search
Solution Methods

What’s wrong with that?

• New constraint → new code
 – Often right in the core

• New constraints interact
 – e.g. Multiple time windows mess up duration calculation

• Code is hard to understand, hard to maintain
Solution Methods

An alternative:

Constraint Programming
Constraint Programming

CP offers a language for representing problems
• Decision variables
• Constraints on variables

Also offers techniques for solving the problems
• Systematic search
• Heuristic Search
Variables are represented by their domain
- (Usually finite) set of feasible values
- E.g. $x \in [0,100]$ or $x \in [0,1,3..15,16,18,55..99]$

Constraints link variables
- $x \leq 4y + 6z$
- $x^2 + y^2 = z^2$
- Cardinality $(X, 1, 4, 5)$
 (In the set X the value ‘1’ occurs at least 4 times, and no more than 5 times)
- AllDifferent (X) (All values in X are different)
- DriverBreak $(30, 120, 240)$
 (A break of 30 minutes must be inserted after 120 minutes but no later than 240 minutes after start of route)
Propagators (efficiently) enforce constraints

- Wake when the domain of a linked variable is changed
- For each value in each variable
 - Ensure there is a set of feasible values of other variables that supports that value – e.g.

\[
x < y
\]
\[
x = [3,5,7,9]
\]
\[
y = [2,4,6,8]
\]
- The value ‘9’ in x has no support in y
- The value ‘2’ in y has no support in x
- After propagation: \[x = [3,5,7]\]
 \[y = [4,6,8]\]
Eg Mutual Exclusion constraint in VRP
• (If any visit from the set D is assigned, then no others can be)

• Uses ‘isAssigned’ var
 • Domain [0,1]
• Attach propagator to the ‘isAssigned’ variable for each of the visits
• Propagator wakes when ‘isAssigned’ is bound to 1 for any visit
• Propagates by binding isAssigned to ‘0’ for remaining visits.
CP101

• Typical execution:
 • Establish choice point (store all current domains)
 • Choose variable to instantiate
 • Choose value to assign, and assign it
 • Propagations fire until a *fixed point* is achieved, or an inconsistency is proved (empty domain)
 • If inconsistent,
 • Backtrack (restore to choicepoint)
 • Remove offending value from the variable’s domain
 • Repeat until all variables are bound (assigned)
 • For complete search, store sol, then act like inconsistent
‘Choose a variable to assign, choose value to assign’
• Very good fit for constructive route creation
• After each insert, propagators fire
• New variable domains give look-ahead to feasible future insertions
• Constraints guide insertion process

Step-to-new-solution does not work as well
• Local move operators can only use CP as a rule checker
 • Do not leverage full power of CP
string: Name;

% Customers
int: NumCusts;
set of int: Customers =
 1..NumCusts;

% Locations
int: NumLocs = NumCusts + 1;
set of int: Locations =
 1..NumLocs;

% Vehicles
int: NumVehicles;
int: NumRoutes = NumVehicles;
set of int: Vehicles =
 1..NumVehicles;

% Location data
array[Locations] of float: locX;
array[Locations] of float: locY;
array [Locations, Locations] of int: dist;

% Decision variables
var int: obj;
array[Visits] of var Visits:
 routeOf;
array[Visits] of var Visits:
 succ;
array[Visits] of var [0,1]:
 isAssigned;

constraint alldifferent (succ);
constraint circuit (succ);
constraint
 obj = sum (i in Visits)
 (dist[Loc[i],Loc[succ[i]]]);
constraint
 sum (i in Visits,j = routeOf[i])
 (demand[i]) < j)
 for j in Vehicles;
Constraint Programming for the VRP

Constraint Programming

Advantages:
• Expressive language for formulating constraints
• Each constraint encapsulated
• Constraints interact naturally
• Constraints guide construction

Disadvantages:
• Can be slow
• No fine control of solving
 • (unless you use a low-level library like gecode)
Constraint Programming

Two ways to use constraint programming

• Rule Checker
• Properly

Rule Checker:

• Use favourite method to create/improve a solution
• Check it with CP
 – Very inefficient.
A CP Model for the VRP
Vocabulary

• A *solution* is made up of *routes* (one for each vehicle)
• A *route* is made up of a sequence of *visits*
• Some visits serve a customer (*customer visit*)

(Some tricks)
• Each route has a “start visit” and an “end visit”
• Start visit is first visit on a route – location is depot
• End visit is last visit on a route – location is depot
• Also have an additional route – the unassigned route
 – Where visits live that cannot be assigned
Model

A (rich) vehicle routing problem
• n customers (fixed in this model)
• v vehicles (fixed in this model)
• $m = v + 1$ one route per vehicle plus “unassigned” route
• fixed locations
 – where things happen
 – one for each customer + one for (each?) depot
• c commodities (e.g. weight, volume, pallets)
 – Know demand from each customer for each commodity
• Know time between each location pair
• Know cost between each location pair
 – Both obey triangle inequality
Sets

- \(N = \{1 \ldots n\} \) – customers
- \(V = \{1 \ldots v\} \) – vehicles/real routes
- \(R = \{1 \ldots m\} \) - routes include ‘unassigned’ route
- \(S = \{n+1 \ldots n+m\} \) – start visits
- \(E = \{n+m+1 \ldots n+2m\} \) – end visits
- \(V = N \cup S \cup E \) – all visits
- \(V^S = N \cup S \) – visits that have a sensible successor
- \(V^E = N \cup E \) – visits that have a sensible predecessor
Referencing

Customers
• Each customer has an index in $N = \{1..n\}$
• Customers are ‘named’ in CP by their index

Routes
• Each route has an index in $R = \{1..m\}$
• Unassigned route has index m
• Routes are ‘named’ in CP by their index

Visits
• Customer visit index same as customer index
• Start visit for route k has index $n + k$; aka $start_k$
• End visit for route k has index $n + m + k$; aka end_k
Data

We know (note uppercase)

- V_i The ‘value’ of customer i
- D_{ik} Demand by customer i for commodity k
- E_i Earliest time to start service at i
- L_i Latest time to start service at i
- Q_{jk} Capacity of vehicle j for commodity k
- T_{ij} Travel time from visit i to visit j
- C_{ij} Cost (w.r.t. objective) of travel from i to j
Basic Variables

Successor variables: s_i
- s_i gives direct successor of i, i.e. the index of the next visit on the route that visits i
- $s_i \in V^E$ for $i \in V^S$ $s_i = 0$ for $i \in E$

Predecessor variables p_i
- p_i gives the index of the previous visit in the route
- $p_i \in V^S$ for $i \in V^E$ $p_i = 0$ for $i \in S$
- Redundant – but empirical evidence for its use

Route variables r_i
- r_i gives the index of the route (vehicle) that visits i
- $r_i \in R$
Example

<table>
<thead>
<tr>
<th>i</th>
<th>s_i</th>
<th>p_i</th>
<th>r_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Route 1

Route 2

Start visits

End visits
Other variables

Accumulation Variables

• q_{ik} Quantity of commodity k after visit i
• c_i Objective cost getting to i

• For problems with time constraints
 • a_i Arrival time at i
 • t_i Start time at i (time service starts)
 • d_i Departure time at i

• Actually, only t_i is required, but others allow for expressive constraints
What can we model?

- Basic VRP
- VRP with time windows
- Multi-depot
- Heterogeneous fleet
- Open VRP (vehicle not required to return to base)
 - Requires *anywhere* location
 - Route end visits located at *anywhere*
 - distance $i \rightarrow anywhere = 0$
- Compatibility
 - Customers on different / same vehicle
 - Customers on/not on given vehicle
- Pickup and Delivery problems
What can we model?

• Variable load/unload times
 – by changing departure time relative to start time
• Dispatch time constraints
 – e.g. limited docks
 – \(s_i \) for \(i \) in \(S \) is load-start time
• Depot close time
 – Time window on end visits
• Fleet size and mix
 – Add lots of vehicles
 – Need to introduce a ‘fixed cost’ for a vehicle
 – \(C_{ij} \) is increased by fixed cost for all \(i \in S \), all \(j \in N \)
What can’t we model

• Can’t handle dynamic problems
 – Fixed domain for s, p, r vars
• Can’t introduce new visits post-hoc
 – E.g. optional driver break must be allowed at start
• Can’t handle multiple visits to same customer
 – ‘Larger than truck-load’ problems
 – If qty is fixed, can have multiple visits / cust
 – Heterogeneous fleet is a pain
• Can handle time- or vehicle-dependent travel times/costs with mods
• Can handle Soft Constraints with mods
Objective

Want to minimize

- sum of objective \((c_{ij})\) over used arcs, plus
- value of unassigned visits

\[
\text{minimize} \sum_{i \in E} c_i + \sum_{i \mid r_i = 0} v_i
\]
Basic constraints

Path \((S, E, \{ s_i \mid i \in V \})\)

AllDifferent \((\{ p_i \mid i \in V^E \})\)

Accumulate obj.
\[
c_{s_i} = c_i + C_{i,s_i} \quad \forall i \in V^S
\]

Accumulate time
\[
a_{s_i} = d_i + T_{i,s_i} \quad \forall i \in V^S
\]

Time windows
\[
t_i \geq a_i \quad \forall i \in V
\]
\[
t_i \leq L_i \quad \forall i \in V
\]
\[
t_i \geq E_i \quad \forall i \in V
\]
\[
t_i = 0 \quad \forall i \in S
\]
Constraints

- **Load**

 \[q_{s,ik} = q_{ik} + Q_{s,ik} \quad \forall i \in V^S, k \in C \]

 \[q_{ik} \leq Q_{r,ik} \quad \forall i \in V, k \in C \]

 \[q_{ik} \geq 0 \quad \forall i \in V, k \in C \]

 \[q_{ik} = 0 \quad \forall i \in S, k \in C \]

- **Consistency**

 \[s_{p,i} = i \quad \forall i \in V^S \]

 \[p_{s,i} = i \quad \forall i \in V^E \]

 \[r_i = r_{s,i} \quad \forall i \in V^S \]

 \[r_{n+k} = k \quad \forall k \in M \]

 \[r_{n+m+k} = k \quad \forall k \in M \]
Subtour elimination

• Most CP libraries have built-ins
 – MiniZinc: ‘circuit’
 – Comet: ‘circuit’
 – ILOG: Path constraint
Propagation – Cycles

‘Path’ constraint

• Propagates subtour elimination
• Also propagates cost

• path \((S, E, \text{succ}, P, z)\)
 – \text{succ} array implies path
 – ensures path from nodes in \(S\) to nodes in \(T\) through nodes in \(P\)
 – variable \(z\) bounds cost of path
 – cost propagated incrementally based on shortest / longest paths
Large Neighbourhood Search revisited
Large Neighbourhood Search

Destroy & Re-create
• Destroy part of the solution
 – Remove visits from the solution
• Re-create solution
 – Use insert method to re-insert customers
 – Different insert methods lead to new (better?) solutions
• If the solution is better, keep it
• Repeat
Large Neighbourhood Search

Destroy part of the solution (Select method)

In CP terms, this means:
• Relax some variable assignments

In CP-VRP terms, this means
• Relax some $routeOf$ and $successor$ assignments
Large Neighbourhood Search

Re-create solution

- Use insert methods
- Uses full power of CP propagations
A MiniZinc VRP model
Advanced techniques – Recreate

Adaptive Decomposition

Decompose problem
- Only consider 2-3 routes
- Smaller problem is much easier to solve
Advanced techniques – Recreate

Adaptive Decomposition

Decompose problem
• Only consider 2-3 routes
• Smaller problem is much easier to solve

Adaptive
• Decompose in different ways
• Use problem features to determine decomposition
Conclusions

• Now you know
 o How to construct a solution to a VRP by successive insertion
 o How to improve the solution using
 – Variable Neighbourhood Search
 – Large Neighbourhood Search

• Argued that CP is “natural” for solving vehicle routing problems
 – Real problems often have unique constraints
 – Easy to change CP model to include new constraints
 – New constraints don’t change core solve method
 – Infrastructure for complete (completish) search in subproblems

• LNS is “natural” for CP
 – Insertion leverages propagation